Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Multiphysics modeling in support of ultrasonic image development: Integration of fluid-structure interaction simulations and Field II applied to the carotid artery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Swillens, A. ; IBiTech-bioMMeda, Ghent Univ., Ghent, Belgium ; De Santis, G. ; Segers, P. ; Lovstakken, L.
more authors

Previously, we proposed a multiphysics model coupling computational fluid dynamics (CFD) and Field II, allowing assessment of the performance of current and new blood flow estimators (e.g. color flow imaging=CFI, PW Doppler, speckle tracking, vector Doppler) in the carotid artery against ground truth information retrieved from CFD. Important limitations however were the rigid walls and the absence of the arterial wall and surrounding tissue in the simulations. The aim of this study was to improve and expand the model to a more realistic setup of a distensible carotid artery embedded in surrounding tissue. For this purpose, we integrated fluid-structure interaction (FSI) simulations with an ultrasound simulator (Field II), which allows comparison of the ultrasound (US) images with the input data from FSI. Field II represents tissue as random points on which ultrasound waves reflect and whose position can be updated based on the flow field and vessel wall deformation from FSI.We simulated the RF-signal of a patient-specific carotid bifurcation, including the blood pool as well as the vessel wall and surrounding tissue. Realism of the multiphysics model was demonstrated with duplex images.

Published in:

Ultrasonics Symposium (IUS), 2011 IEEE International

Date of Conference:

18-21 Oct. 2011