Cart (Loading....) | Create Account
Close category search window
 

Optimization with exit functions of GLDPC-Staircase codes for the BEC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In a previous work we introduced the Generalized LDPC-Staircase codes for the Binary Erasure Channel, based on LDPC-Staircase codes and Reed Solomon as component codes. In this paper we perform an asymptotic analysis, in terms of EXtrinsic Information Transfer functions and we derive an upper bound of the ML decoding threshold based on the area theorem. We use this analysis to study the impact of the internal LDPC-Staircase code rate on the performance, and show that the proposed Generalized LDPC-Staircase codes closely approach the channel capacity, with only a small number (E = 2, 3) of extra-repair symbols per check node.

Published in:

Signal Processing Advances in Wireless Communications (SPAWC), 2012 IEEE 13th International Workshop on

Date of Conference:

17-20 June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.