By Topic

Neural-Fitted TD-Leaf Learning for Playing Othello With Structured Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
van den Dries, S. ; Fac. of Mech. Eng., Eindhoven Univ. of Technol., Eindhoven, Netherlands ; Wiering, M.A.

This paper describes a methodology for quickly learning to play games at a strong level. The methodology consists of a novel combination of three techniques, and a variety of experiments on the game of Othello demonstrates their usefulness. First, structures or topologies in neural network connectivity patterns are used to decrease the number of learning parameters and to deal more effectively with the structural credit assignment problem, which is to change individual network weights based on the obtained feedback. Furthermore, the structured neural networks are trained with the novel neural-fitted temporal difference (TD) learning algorithm to create a system that can exploit most of the training experiences and enhance learning speed and performance. Finally, we use the neural-fitted TD-leaf algorithm to learn more effectively when look-ahead search is performed by the game-playing program. Our extensive experimental study clearly indicates that the proposed method outperforms linear networks and fully connected neural networks or evaluation functions evolved with evolutionary algorithms.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 11 )