By Topic

Discriminative Segmentation-Based Evaluation Through Shape Dissimilarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Segmentation-based scores play an important role in the evaluation of computational tools in medical image analysis. These scores evaluate the quality of various tasks, such as image registration and segmentation, by measuring the similarity between two binary label maps. Commonly these measurements blend two aspects of the similarity: pose misalignments and shape discrepancies. Not being able to distinguish between these two aspects, these scores often yield similar results to a widely varying range of different segmentation pairs. Consequently, the comparisons and analysis achieved by interpreting these scores become questionable. In this paper, we address this problem by exploring a new segmentation-based score, called normalized Weighted Spectral Distance (nWSD), that measures only shape discrepancies using the spectrum of the Laplace operator. Through experiments on synthetic and real data we demonstrate that nWSD provides additional information for evaluating differences between segmentations, which is not captured by other commonly used scores. Our results demonstrate that when jointly used with other scores, such as Dice's similarity coefficient, the additional information provided by nWSD allows richer, more discriminative evaluations. We show for the task of registration that through this addition we can distinguish different types of registration errors. This allows us to identify the source of errors and discriminate registration results which so far had to be treated as being of similar quality in previous evaluation studies.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 12 )