By Topic

Bayesian Saliency via Low and Mid Level Cues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yulin Xie ; School of Information and Communication Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China ; Huchuan Lu ; Ming-Hsuan Yang

Visual saliency detection is a challenging problem in computer vision, but one of great importance and numerous applications. In this paper, we propose a novel model for bottom-up saliency within the Bayesian framework by exploiting low and mid level cues. In contrast to most existing methods that operate directly on low level cues, we propose an algorithm in which a coarse saliency region is first obtained via a convex hull of interest points. We also analyze the saliency information with mid level visual cues via superpixels. We present a Laplacian sparse subspace clustering method to group superpixels with local features, and analyze the results with respect to the coarse saliency region to compute the prior saliency map. We use the low level visual cues based on the convex hull to compute the observation likelihood, thereby facilitating inference of Bayesian saliency at each pixel. Extensive experiments on a large data set show that our Bayesian saliency model performs favorably against the state-of-the-art algorithms.

Published in:

IEEE Transactions on Image Processing  (Volume:22 ,  Issue: 5 )