By Topic

3D Stochastic Completion Fields for Mapping Connectivity in Diffusion MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Parya MomayyezSiahkal ; McGill University, Montreal ; Kaleem Siddiqi

The 2D stochastic completion field algorithm, introduced by Williams and Jacobs [1], [2], uses a directional random walk to model the prior probability of completion curves in the plane. This construct has had a powerful impact in computer vision, where it has been used to compute the shapes of likely completion curves between edge fragments in visual imagery. Motivated by these developments, we extend the algorithm to 3D, using a spherical harmonics basis to achieve a rotation invariant computational solution to the Fokker-Planck equation describing the evolution of the probability density function underlying the model. This provides a principled way to compute 3D completion patterns and to derive connectivity measures for orientation data in 3D, as arises in 3D tracking, motion capture, and medical imaging. We demonstrate the utility of the approach for the particular case of diffusion magnetic resonance imaging, where we derive connectivity maps for synthetic data, on a physical phantom and on an in vivo high angular resolution diffusion image of a human brain.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:35 ,  Issue: 4 )