Cart (Loading....) | Create Account
Close category search window
 

CMT-QA: Quality-Aware Adaptive Concurrent Multipath Data Transfer in Heterogeneous Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Changqiao Xu ; State Key Lab. of Networking & Switching Technol., Beijing Univ. of Posts & Telecommun., Beijing, China ; Tianjiao Liu ; Jianfeng Guan ; Hongke Zhang
more authors

Mobile devices equipped with multiple network interfaces can increase their throughput by making use of parallel transmissions over multiple paths and bandwidth aggregation, enabled by the stream control transport protocol (SCTP). However, the different bandwidth and delay of the multiple paths will determine data to be received out of order and in the absence of related mechanisms to correct this, serious application-level performance degradations will occur. This paper proposes a novel quality-aware adaptive concurrent multipath transfer solution (CMT-QA) that utilizes SCTP for FTP-like data transmission and real-time video delivery in wireless heterogeneous networks. CMT-QA monitors and analyses regularly each path's data handling capability and makes data delivery adaptation decisions to select the qualified paths for concurrent data transfer. CMT-QA includes a series of mechanisms to distribute data chunks over multiple paths intelligently and control the data traffic rate of each path independently. CMT-QA's goal is to mitigate the out-of-order data reception by reducing the reordering delay and unnecessary fast retransmissions. CMT-QA can effectively differentiate between different types of packet loss to avoid unreasonable congestion window adjustments for retransmissions. Simulations show how CMT-QA outperforms existing solutions in terms of performance and quality of service.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:12 ,  Issue: 11 )

Date of Publication:

Nov. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.