By Topic

Novel reference range selection method in InISAR imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chenglan Liu ; School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, P. R. China ; Feng He ; Xunzhang Gao ; Xiang Li
more authors

Aiming at the reference range selection for different antennas in interferometric inverse synthetic aperture radar (InISAR) systems, this paper proposes a respective focusing (RF) method. The reference ranges for echoes of different antennas are selected respectively for RF, which is different from the traditional uniform focusing (UF) with the same reference range applied to all the antennas. First, a comparison between UF and RF for InISAR signal model considering the ranging error is given. Compared with RF, UF has an advantage in overcoming the ranging error differences between different antennas. Then the influence of ranging error upon the interferometric imaging with RF is investigated particularly, and it is found that the ranging error differences between different antennas are far smaller than the wavelength, which is advantageous to imaging. By comparing the capabilities of interferometric imaging between RF and UF, it is concluded that RF is a better choice in conquering problems such as image mismatching and phase ambiguity even with ranging errors. Simulations demonstrate the validity of the proposed method.

Published in:

Journal of Systems Engineering and Electronics  (Volume:23 ,  Issue: 4 )