By Topic

Segmentation of fingerprint images based on bi-level processing using fuzzy rules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fleyeh, H. ; Comput. Eng. Dept., Dalarna Univ., Borlange, Sweden ; Davami, E. ; Jomaa, D.

This paper presents a new approach to segment low quality fingerprint images which are collected by low quality fingerprint readers. Images collected using such readers are easy to collect but difficult to segment. The proposed approach is based on combining global and local processing to achieve segmentation of fingerprint images. On the global level, the fingerprint is located and extracted from the rest of the image by using a global thresholding followed by dilation and edge detection of the largest object in the image. On the local level, fingerprint's foreground and its border image are treated using different fuzzy rules which the two images are segmented. These rules are based on the mean and variance of the block under consideration. The approach is implemented in three stages; preprocessing, segmentation, and post-processing. Segmentation of 100 images was performed and compared with manual examinations by human experts. The experiments showed that 96% of images under test are correctly segmented. The results from the quality of segmentation test revealed that the average error in block segmentation was 2.84% and the false positive and false negatives were approximately 1.4%. This indicates the high robustness of the proposed approach.

Published in:

Fuzzy Information Processing Society (NAFIPS), 2012 Annual Meeting of the North American

Date of Conference:

6-8 Aug. 2012