By Topic

An elastomeric insole for 3-axis ground reaction force measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lincoln, L.S. ; Bioinstrumentation Lab., Univ. of Utah, Salt Lake City, UT, USA ; Bamberg, S.J.M. ; Parsons, E. ; Salisbury, C.
more authors

Measurement of the ground reaction force vector is important in clinical gait analysis and biomechanics research, for example to enable inverse dynamic calculations. Instrumented insoles allow biomechanical data to be collected outside of the motion analysis laboratory in many environments. However, current insole-based approaches typically measure only the vertical component of the reaction force and the plantar center of pressure. This work describes the development and evaluation of a silicone insole capable of measuring the complete three dimensional reaction force vector. The insole is optically based and low-cost with no complex manufacturing requirements. Accuracy over five nominal gait trails is shown to be on the order of 10% of the force range, with mean errors of 10.7 N in the shear directions and 68.1 N in normal. The insole can provide a simple mobile platform that allows kinetic gait data to be collected in many environments while minimally affecting the wearer's gait.

Published in:

Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on

Date of Conference:

24-27 June 2012