By Topic

Vision-based posture assessment to detect and categorize compensation during robotic rehabilitation therapy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Babak Taati ; Intelligent Assistive Technology and Systems Lab (IATSL), University of Toronto ; Rosalie Wang ; Rajibul Huq ; Jasper Snoek
more authors

A vision-based posture assessment system for real-time monitoring of upper-limb robotic rehabilitation therapy is developed. The system is capable of automatically detecting and categorizing compensatory movements during robotic exercises and could be used in prompting the patient into the correct pose. A consumer depth camera and skeleton tracking algorithms were used to track the pose of the patient in real-time, and to extract a set of discriminating features which correlated with various posture modes. A multi-class classifier capable of incorporating temporal dynamics was trained to identify and categorize the most common types of compensation at high accuracy (86% per frame). A simple multi-stage active learning strategy was used to minimize the amount of manual annotation needed in providing the classifier with training data.

Published in:

2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)

Date of Conference:

24-27 June 2012