By Topic

Mass detection in digital mammograms using Gabor filter bank

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hussain, M. ; Dept. of Comput. Sci., King Saud Univ., Riyadh, Saudi Arabia ; Khan, S. ; Muhammad, G. ; Berbar, M.
more authors

Digital Mammograms are currently the most effective imaging modality for early detection of breast cancer but the number of false negatives and false positives is high. Mass is one type of breast lesion and the detection of masses is highly challenged problem. Almost all methods that have been proposed so far suffer from high number of false positives and false negatives. In this paper, a method for detecting true masses is presented, especially, for the reduction of false positives and false negatives. The key idea of the proposal is the use of Gabor filter banks for extracting the most representative and discriminative local spatial textural properties of masses that are present in mammograms at different orientations and scales. The system is evaluated on 512 (256 normal+256 true mass) regions of interests (ROIs) extracted from digital mammograms of DDSM database. We performed experiments with Gabor filter banks having different numbers of orientations and scales to find the best parameter setting. Using a powerful feature selection technique and support vector machines (SVM) with 10-fold cross validation, we report to achieve Az = 0.995±0.011, the area under ROC. Comparison with state-of-the-art techniques suggests that the proposed system outperforms similar methods, which are based on texture description, and the difference is statistically significant.

Published in:

Image Processing (IPR 2012), IET Conference on

Date of Conference:

3-4 July 2012