By Topic

Randomized unscented transform in state estimation of non-Gaussian systems: Algorithms and performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Straka, O. ; Dept. of Cybern., Univ. of West Bohemia, Pilsen, Czech Republic ; Dunik, J. ; Simandl, M. ; Blasch, E.

The paper deals with state estimation of nonlinear non-Gaussian systems with a special focus on the Gaussian sum filters. To achieve a higher estimate quality, state and measurement predictive moments appearing in the filters are computed by the randomized unscented transform, which provides asymptotically exact estimates of the moments. The use of the Gaussian sum filter employing the randomized unscented transform is introduced and the proposed algorithm is illustrated in a numerical example. The analysis of the numerical example involves a comparison of several filters using a number of performance metrics both absolute and relative, assessing the point estimate quality, the estimate error quality, and the density estimate quality.

Published in:

Information Fusion (FUSION), 2012 15th International Conference on

Date of Conference:

9-12 July 2012