Cart (Loading....) | Create Account
Close category search window
 

Efficient RNS Implementation of Elliptic Curve Point Multiplication Over {\rm GF}(p)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Esmaeildoust, M. ; Fac. of Electr. & Comput. Eng., Shahid Beheshti Univ., Tehran, Iran ; Schinianakis, D. ; Javashi, H. ; Stouraitis, T.
more authors

Elliptic curve point multiplication (ECPM) is one of the most critical operations in elliptic curve cryptography. In this brief, a new hardware architecture for ECPM over GF(p) is presented, based on the residue number system (RNS). The proposed architecture encompasses RNS bases with various word-lengths in order to efficiently implement RNS Montgomery multiplication. Two architectures with four and six pipeline stages are presented, targeted on area-efficient and fast RNS Montgomery multiplication designs, respectively. The fast version of the proposed ECPM architecture achieves higher speeds and the area-efficient version achieves better area-delay tradeoffs compared to state-of-the-art implementations.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:21 ,  Issue: 8 )

Date of Publication:

Aug. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.