Cart (Loading....) | Create Account
Close category search window

Investigation of MR-Based Attenuation Correction and Motion Compensation for Hybrid PET/MR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Buerger, C. ; Dept. of Biomed. Eng., King''s Coll. London, London, UK ; Tsoumpas, C. ; Aitken, A. ; King, A.P.
more authors

In hybrid PET/MR systems, attenuation maps can be derived from MR to correct for attenuation in PET. However, MR-based attenuation correction (AC) in abdominal applications remains challenging (i) because of poor signal from important tissue types in common MR sequences (e.g., cortical bone) and (ii) because of respiratory motion which results in misalignments between the derived attenuation maps and the PET emissions. Furthermore, respiratory motion also leads to motion-blurring artefacts in the final PET reconstructions. In this paper, we compute an MR-based 4D attenuation map including cortical bone by combining an Ultrashort Echo Time (UTE) acquisition with a subject-specific motion model derived from a second near real-time 3D MR image acquisition. This model allows us to create attenuation maps at any respiratory position which are used for AC in the reconstruction of different respiratory resolved PET images. The inverse of the model is used for motion compensation (MC) of these images. We demonstrate our approach on MR data from 5 healthy volunteers including 3 manually inserted artificial lesions. The impact of bone tissue and respiratory motion on AC is investigated in PET simulations (i) by misclassifying bone to soft tissue in the attenuation maps leading to errors of up to 26.0% in mean uptake for lesions close to bone, and (ii) by using a non-moving attenuation map leading to errors of up to 24.2%. The impact of respiratory motion on MC showed errors of up to 50.7% in areas of strong motion if MC was not performed. The results show that the effect of motion has to be considered both for attenuation correction and for motion-compensating PET emissions. This additive effect of motion is larger than the effect of a wrong AC.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:59 ,  Issue: 5 )

Date of Publication:

Oct. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.