By Topic

Fault Ride-Through Improvement of DFIG-WT by Integrating a Two-Degrees-of-Freedom Internal Model Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Campos-Gaona, D. ; Posgrado en Ing. Electr., Inst. Tecnol. de Morelia, Morelia, Mexico ; Moreno-Goytia, E.L. ; Anaya-Lara, O.

A novel two-degree-of-freedom internal model control (IMC) controller that improves the fault ride-through (FRT) capabilities and crowbar dynamics of doubly fed induction generator (DFIG) wind turbines is presented. As opposed to other control strategies available in the open literature, the proposed IMC controller takes into account the power limit characteristic of the DFIG back-to-back converters and their dc-link voltage response in the event of a fault and consequent crowbar operation. Results from a digital model implemented in Matlab/Simulink and verified by a laboratory scale-down prototype demonstrate the improved DFIG FRT performance with the proposed controller.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 3 )