By Topic

Statistical and Neural-Network Approaches for the Classification of Induction Machine Faults Using the Ambiguity Plane Representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Boukra, T. ; Univ. of Skikda, Skikda, Algeria ; Lebaroud, A. ; Clerc, G.

A novel hybrid feature-reduction methodology is proposed as a contribution to the induction motor fault classification, to improve the classification rate of the current waveform events related to varieties of induction machine faults. This methodology relies on the combination of a feature-extraction technique based on the smoothed ambiguity plane designed for maximizing the separability between classes using Fisher's discriminant ratio, with the feature-selection technique, based on the proposed error-probability model to select an optimal number of the extracted features. This model depends on two parameters, namely, the smoothing kernel used to derive the features and the distance measurement. The proposed methodology is validated experimentally on a 5.5-kW induction motor test bench, and their performances are compared with the classification algorithm based on neural networks with sigmoid and wavelets in hidden neurons, known as a flexible tool for learning and recognizing system faults. The results obtained show an accurate classification independent from the load level.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 9 )