Cart (Loading....) | Create Account
Close category search window
 

Multiple-Spectral-Band CRFs for Denoising Junk Bands of Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhong, P. ; ATR National Key Laboratory, School of Electronic Science and Engineering, National University of Defense Technology, Changsha, China ; Wang, R.

Denoising of hyperspectral imagery in the domain of imaging spectroscopy by conditional random fields (CRFs) is addressed in this work. For denoising of hyperspectral imagery, the strong dependencies across spatial and spectral neighbors have been proved to be very useful. Many available hyperspectral image denoising algorithms adopt multidimensional tools to deal with the problems and thus naturally focus on the use of the spectral dependencies. However, few of them were specifically designed to use the spatial dependencies. In this paper, we propose a multiple-spectral-band CRF (MSB-CRF) to simultaneously model and use the spatial and spectral dependencies in a unified probabilistic framework. Furthermore, under the proposed MSB-CRF framework, we develop two hyperspectral image denoising algorithms, which, thanks to the incorporated spatial and spectral dependencies, can significantly remove the noise, while maintaining the important image details. The experiments are conducted in both simulated and real noisy conditions to test the proposed denoising algorithms, which are shown to outperform the popular denoising methods described in the previous literatures.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:51 ,  Issue: 4 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.