By Topic

Minimax design of nonnegative finite impulse response filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoping Lai ; Inst. of Inf. & Control, Hangzhou Dianzi Univ., Hangzhou, China ; Anke Xue ; Zhiping Lin ; Chunlu Lai

Nonnegative impulse response (NNIR) filters have found many applications in signal processing and information fusion areas. Evidence filtering is one of the examples among others. An evidence filter is required to satisfy a nonnegativity condition and a normalization condition on its impulse response coefficients, and thus is basically an NNIR filter. This paper considers the design of nonnegative finite impulse response (FIR) filters based on frequency response approximation and proposes a constrained minimax design formulation using the fundamental limitations on the NNIR filter's frequency responses recently developed in the literature. The formulation is converted into a linearly constrained positive-definite quadratic programming and then solved with the Goldfarb-Idnani algorithm. The proposed method is applicable to nonnegative FIR lowpass as well as other types of filters. Design examples demonstrate the effectiveness of the proposed method.

Published in:

Information Fusion (FUSION), 2012 15th International Conference on

Date of Conference:

9-12 July 2012