By Topic

A New Approach to Low-Power and Low-Latency Wake-Up Receiver System for Wireless Sensor Nodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Dae-Young Yoon ; Dept. of Electr. Eng., KAIST, Daejeon, South Korea ; Chang-Jin Jeong ; Cartwright, J. ; Ho-Yong Kang
more authors

A new wake-up receiver is proposed to reduce energy consumption and latency through adoption of two different data rates for the transmission of wake-up packets. To reduce the energy consumption, the start frame bits (SFBs) of a wake-up packet are transmitted at a low data rate of 1 kbps, and a bit-level duty cycle is employed for detection of SFBs. To reduce both energy consumption and latency, duty cycling is halted upon detection of the SFB sequence, and the rest of the wake-up packet is transmitted at a higher data rate of 200 kbps. The proposed wake-up receiver is designed and fabricated in a 0.18 μm CMOS technology with a core size of 1850×1560 μm for the target frequency range of 902-928 MHz. The measured results show that the proposed design achieves a sensitivity of -73 dBm, while dissipating an average power of 8.5 μW from a 1.8 V supply.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:47 ,  Issue: 10 )