By Topic

Frequency Dependence of Soil Parameters: Effect on the Lightning Response of Grounding Electrodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alipio, R. ; Lightning Res. Center (LRC), Fed. Univ. of Minas Gerais, Belo Horizonte, Brazil ; Visacro, S.

Quantities related to the response of grounding electrodes subject to lightning currents are simulated under the assumption of constant and frequency-dependent soil resistivity and permittivity for 100-4000 Ω·m soils, using an accurate electromagnetic model. It was found that the frequency dependence of soil parameters is responsible for decreasing the grounding potential rise of electrodes and, thus, their impulse impedance and their impulse coefficient. This effect is more pronounced with increasing soil resistivity and for typical currents of subsequent strokes. The reduction of these quantities is negligible for soils of 300 Ω·m and below. It is considerable for soils above 500 Ω·m and is very significant above 1000 Ω·m. Reductions of around 23%, 30%, 40%, and 52% are found, respectively, for soils of 600, 1000, 2000, and 4000 Ω·m and typical subsequent stroke currents. Lower values, around 8%, 11%, 18%, and 28%, are found for first stroke currents.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:55 ,  Issue: 1 )