Cart (Loading....) | Create Account
Close category search window

Structured Output Layer Neural Network Language Models for Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hai-Son Le ; LIMSI, Univ. Paris-Sud, Orsay, France ; Oparin, I. ; Allauzen, A. ; Gauvain, J.
more authors

This paper extends a novel neural network language model (NNLM) which relies on word clustering to structure the output vocabulary: Structured OUtput Layer (SOUL) NNLM. This model is able to handle arbitrarily-sized vocabularies, hence dispensing with the need for shortlists that are commonly used in NNLMs. Several softmax layers replace the standard output layer in this model. The output structure depends on the word clustering which is based on the continuous word representation determined by the NNLM. Mandarin and Arabic data are used to evaluate the SOUL NNLM accuracy via speech-to-text experiments. Well tuned speech-to-text systems (with error rates around 10%) serve as the baselines. The SOUL model achieves consistent improvements over a classical shortlist NNLM both in terms of perplexity and recognition accuracy for these two languages that are quite different in terms of their internal structure and recognition vocabulary size. An enhanced training scheme is proposed that allows more data to be used at each training iteration of the neural network.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.