Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Articulatory Control of HMM-Based Parametric Speech Synthesis Using Feature-Space-Switched Multiple Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Zhen-Hua Ling ; iFLYTEK Speech Lab., Univ. of Sci. & Technol. of China, Hefei, China ; Richmond, K. ; Yamagishi, J.

In previous work we proposed a method to control the characteristics of synthetic speech flexibly by integrating articulatory features into a hidden Markov model (HMM) based parametric speech synthesizer. In this method, a unified acoustic-articulatory model is trained, and context-dependent linear transforms are used to model the dependency between the two feature streams. In this paper, we go significantly further and propose a feature-space-switched multiple regression HMM to improve the performance of articulatory control. A multiple regression HMM (MRHMM) is adopted to model the distribution of acoustic features, with articulatory features used as exogenous “explanatory” variables. A separate Gaussian mixture model (GMM) is introduced to model the articulatory space, and articulatory-to-acoustic regression matrices are trained for each component of this GMM, instead of for the context-dependent states in the HMM. Furthermore, we propose a task-specific context feature tailoring method to ensure compatibility between state context features and articulatory features that are manipulated at synthesis time. The proposed method is evaluated on two tasks, using a speech database with acoustic waveforms and articulatory movements recorded in parallel by electromagnetic articulography (EMA). In a vowel identity modification task, the new method achieves better performance when reconstructing target vowels by varying articulatory inputs than our previous approach. A second vowel creation task shows our new method is highly effective at producing a new vowel from appropriate articulatory representations which, even though no acoustic samples for this vowel are present in the training data, is shown to sound highly natural.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 1 )