Cart (Loading....) | Create Account
Close category search window
 

Suppressing Device Variability by Cryogenic Implant for 28-nm Low-Power SoC Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

16 Author(s)
Yang, C.L. ; Adv. Technol. Dev. Div., United Microelectron. Corp., Tainan, Taiwan ; Tsai, C.H. ; Li, C.I. ; Tzeng, C.Y.
more authors

In this letter, we have demonstrated that cryogenic implant in the source and drain formation offers advantages for reducing the threshold voltage mismatch in pMOSFET. A discrete dopant profiling method is used to verify the presence of boron out-diffusion from the drain, which further induces the random dopant fluctuation. Results show that this boron out-diffusion can be greatly reduced in this new process. Two major factors in improving the device variability by cryogenic implant are discussed, i.e., the polysilicon grain size control and the embedded-SiGe dislocation defect reduction during source and drain formation.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 10 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.