By Topic

A Multi-Classification Approach for the Detection and Identification of eHealth Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

eHealth services category has a diversified set of traffic patterns and demands in terms of QoS assurances. Existing QoS solutions were designed to support only aggregated classes of service and cannot differentiate traffic based on an application's behavioral pattern. In order to improve the performance of eHealth applications for home and mobile users there is a need to develop new traffic identification techniques, which would work at the edge of the network. This paper addresses the above problem by proposing machine learning-based approach for eHealth traffic identification. We investigate different techniques which combine the results from multiple machine learning classifiers and show which combination of techniques is best suited for identifying diverse eHealth traffic. Our approach is validated in a mobile e-health application context and the results prove that multi-classification techniques can be used in practice to provide application-based service differentiation.

Published in:

Computer Communications and Networks (ICCCN), 2012 21st International Conference on

Date of Conference:

July 30 2012-Aug. 2 2012