By Topic

Distributed discriminative language models for Google voice-search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Preethi Jyothi ; The Ohio State University, USA ; Leif Johnson ; Ciprian Chelba ; Brian Strope

This paper considers large-scale linear discriminative language models trained using a distributed perceptron algorithm. The algorithm is implemented efficiently using a MapReduce/SSTable framework. This work also introduces the use of large amounts of unsupervised data (confidence filtered Google voice-search logs) in conjunction with a novel training procedure that regenerates word lattices for the given data with a weaker acoustic model than the one used to generate the unsupervised transcriptions for the logged data. We observe small but statistically significant improvements in recognition performance after reranking N-best lists of a standard Google voice-search data set.

Published in:

2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Date of Conference:

25-30 March 2012