By Topic

Translating natural language utterances to search queries for SLU domain detection using query click logs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dilek Hakkani-Tür ; Speech Labs, Microsoft, Mountain View, CA, USA ; Gokhan Tur ; Rukmini Iyer ; Larry Heck

Logs of user queries from a search engine (such as Bing or Google) together with the links clicked provide valuable implicit feedback to improve statistical spoken language understanding (SLU) models. However, the form of natural language utterances occurring in spoken interactions with a computer differs stylistically from that of keyword search queries. In this paper, we propose a machine translation approach to learn a mapping from natural language utterances to search queries. We train statistical translation models, using task and domain independent semantically equivalent natural language and keyword search query pairs mined from the search query click logs. We then extend our previous work on enriching the existing classification feature sets for input utterance domain detection with features computed using the click distribution over a set of clicked URLs from search engine query click logs of user utterances with automatically translated queries. This approach results in significant improvements for domain detection, especially when detecting the domains of user utterances that are formulated as natural language queries and effectively complements to the earlier work using syntactic transformations.

Published in:

2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Date of Conference:

25-30 March 2012