Cart (Loading....) | Create Account
Close category search window

Unsupervised training of subspace gaussian mixture models for conversational telephone speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zejun Ma ; Digital Content Technol. Res. Center, Inst. of Autom., Beijing, China ; XiaoRui Wang ; Bo Xu

This paper presents our preliminary works on exploring unsupervised training of subspace gaussian mixture models for under-resourced CTS recognition task. The subspace model yields better performance than conventional GMM model, particularly in small or middle-sized training set. As an effective way to save human efforts, unsupervised learning is often applied to automatically transcribe a large amount of speech archives. The additional auto-transcribed data may help to improve model accuracy. In this paper, experiments are carried out on two publicly available English conversational telephone speech corpora. Both GMM and SGMM model in combination with unsupervised learning are examined and compared in this paper.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on

Date of Conference:

25-30 March 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.