Cart (Loading....) | Create Account
Close category search window
 

Statistical classification of social networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tian Wang ; Dept. of Phys., North Carolina State Univ., Raleigh, NC, USA ; Krim, H.

This paper proposes a new social network classification method by comparing statistics of their centralities and clustering coefficients. Specifically, the proposed method uses the statistics of Degree Centralities and clustering coefficients of networks as a classification criterion. A theoretical justification to this method is also given. In relation to the widely held belief that a social network graph is solely defined by its degree distribution, the novelty of this paper consists in revealing the strong dependence of social networks on Degree Centralities and clustering coefficients, and in using them as minimal information to classify social networks. In addition, experimental classification demonstrates a very good performance of the proposed method on real social network data, and validates the hypothesis that Degree Centralities and clustering coefficients are the only two viable independent properties of a social network.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on

Date of Conference:

25-30 March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.