By Topic

On compressed sensing and the estimation of continuous parameters from noisy observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jesper Kjær Nielsen ; Dept. of Electron. Syst., Aalborg Univ., Aalborg, Denmark ; Mads Græsbøll Christensen ; Søren Holdt Jensen

Compressed sensing (CS) has in recent years become a very popular way of sampling sparse signals. This sparsity is measured with respect to some known dictionary consisting of a finite number of atoms. Most models for real world signals, however, are parametrised by continuous parameters corresponding to a dictionary with an infinite number of atoms. Examples of such parameters are the temporal and spatial frequency. In this paper, we analyse how CS affects the estimation performance of any unbiased estimator when we assume such infinite dictionaries. We base our analysis on the Cramer-Rao lower bound (CRLB) which is frequently used for benchmarking the estimation accuracy of unbiased estimators. For the popular sensing matrices such as the Gaussian sensing matrix, our analysis shows that compressed sensing on average degrades the estimation accuracy by at least the down-sample factor.

Published in:

2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Date of Conference:

25-30 March 2012