Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Random time-frequency subdictionary design for sparse representations with greedy algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moussallam, M. ; Inst. Telecom, Telecom ParisTech, Paris, France ; Daudet, L. ; Richard, G.

Sparse signal approximation can be used to design efficient low bit-rate coding schemes. It heavily relies on the ability to design appropriate dictionaries and corresponding decomposition algorithms. The size of the dictionary, and therefore its resolution, is a key parameter that handles the tradeoff between sparsity and tractability. This work proposes the use of a non adaptive random sequence of subdictionaries in a greedy decomposition process, thus browsing a larger dictionary space in a probabilistic fashion with no additional projection cost nor parameter estimation. This technique leads to very sparse decompositions, at a controlled computational complexity. Experimental evaluation is provided as proof of concept for low bit rate compression of audio signals.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on

Date of Conference:

25-30 March 2012