By Topic

Efficient manifold learning for 3D model retrieval by using clustering-based training sample reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Endoh, M. ; Dept. of Comput. Sci. & Eng., Univ. of Yamanashi, Kofu, Japan ; Yanagimachi, T. ; Ohbuchi, R.

Retrieval accuracy in content-based multimedia retrieval can be improved by using distance metric learned from distribution of features in input feature space. One way to achieve this is by dimension reduction via manifold-learning, such as Locally Linear Embedding [8]. While effective in improving retrieval accuracy, these algorithms have high computational cost that depends on feature dimensionality d and number of training samples N. In this paper, we explore a clustering-based approach to reduce number of training samples; it uses L cluster centers (L≪N) computed from N input features as training samples. We propose to use extremely randomized clustering tree [3] for clustering. Experiments showed that the proposed approach produces better retrieval performance than random sampling, and that the randomized tree is much faster than the k-means algorithm.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on

Date of Conference:

25-30 March 2012