By Topic

Anti-sparse coding for approximate nearest neighbor search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hervé Jégou ; INRIA Rennes Bretagne Atlantique, Campus de Beaulieu, France ; Teddy Furon ; Jean-Jacques Fuchs

This paper proposes a binarization scheme for vectors of high dimension based on the recent concept of anti-sparse coding, and shows its excellent performance for approximate nearest neighbor search. Unlike other binarization schemes, this framework allows, up to a scaling factor, the explicit reconstruction from the binary representation of the original vector. The paper also shows that random projections which are used in Locality Sensitive Hashing algorithms, are significantly outperformed by regular frames for both synthetic and real data if the number of bits exceeds the vector dimensionality, i.e., when high precision is required.

Published in:

2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Date of Conference:

25-30 March 2012