By Topic

Analysis of low fixed pattern noise cell structures for photoconversion layer overlaid CCD or CMOS image sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ohsawa, S. ; Video Digital LSI Design Sect., Toshiba Corp., Yokohama, Japan ; Sasaki, M. ; Miyagawa, R. ; Matsunaga, Y.

A new low fixed pattern noise (FPN) cell structure, which can be used for photoconversion layer overlaid CCD or CMOS image sensors, was proposed and analyzed with a two-dimensional (2-D) device simulator. One of the most serious problems for this type of image sensor is the mixing of signal charges of neighboring cells during signal charge readout. The magnitude of signal mixing was as much as 20% for the conventional 2/3-in 2-million pixel STACK-CCD cell structure. FPN was very visible as a result of this signal mixing. This time, a new cell structure was proposed and analyzed to reduce signal mixing and FPN. It was possible to reduce signal mixing to a low value of 0.7% of the signal level using the new cell structure

Published in:

Electron Devices, IEEE Transactions on  (Volume:44 ,  Issue: 10 )