By Topic

Structural intervention of gene regulatory networks by general rank-k matrix perturbation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaoning Qian ; Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA ; Byung-Jun Yoon ; Dougherty, E.R.

One of the ultimate objectives of studying gene regulatory networks is to derive potential intervention strategies to avoid aberrant cellular behavior. Boolean networks (BNs) and their stochastic extension, probabilistic Boolean networks (PBNs), provide a convenient framework to design different types of intervention strategies. In this paper, we focus on studying structural intervention, in which we perturb regulatory Boolean functions to alter the long-term network dynamics to obtain desirable behavior. Specifically, we extend our previous work that derives optimal structural intervention for rank-1 function perturbations to more general solutions for arbitrary rank-k function perturbations. The analytic solution is derived using the Sherman-Morrison-Woodbury (SMW) formula. We apply the derived structural intervention to a mutated mammalian cell cycle network. Our results show that our intervention strategy correctly identifies the main targets to stop uncontrolled cell growth in the mutated cell cycle network.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on

Date of Conference:

25-30 March 2012