By Topic

Tensor classification for P300-based brain computer interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Onishi, A. ; Dept. of Brain Sci. & Eng., Kyushu Inst. of Technol., Fukuoka, Japan ; Anh Huy Phan ; Matsuoka, K. ; Cichocki, A.

Classification methods have been widely applied in most brain computer interfaces (BCIs) that control devices for better quality of life. Most existing classification methods for P300-based BCIs extract features based on temporal structure related to P300 components of event-related potentials (ERPs). Some others exploit the spatial distribution of ERPs optimally selected by recursive channel elimination. However, none of them employed multilinear structures which exploit hidden features in P300-based BCI data. In this paper, we propose a new feature extraction method based on tensor decomposition for ERP-based BCIs. The method seeks an optimal feature subspace simultaneously spanned by temporal and spatial bases, and additional bases which indicate a variant of ERPs obtained by different degrees of polynomial fittings. The proposed method has been evaluated by both the BCI competition III data set II and the affective face driven paradigm data set, and achieved 92% and 95% classification accuracies respectively, which were better than those of most existing P300-based BCI algorithms.

Published in:

Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on

Date of Conference:

25-30 March 2012