Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

The hybrid implementation genetic algorithm with particle swarm optimization to solve the unconstrained optimization problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
1 Author(s)
Nootyaskool, S. ; Fac. of Inf. Technol., King Mongkut''s Inst. of Technol. Ladkrabang, Bangkok, Thailand

Genetic algorithm (GA) has an advantage in exploration search. Particle swarm optimization (PSO) has an advantage in sharing movement information between particles. The combining between GA and PSO is proposed in this research. We design hybrid-GA with PSO, and compare the performance with simple GA and simple PSO, which their models will find the solution of five-difference complexity of numerical functions. The experiment result showed that hybrid GA with PSO can find the solution of a multimodal problem and unimodal with noise signal quickly.

Published in:

Knowledge and Smart Technology (KST), 2012 4th International Conference on

Date of Conference:

7-8 July 2012