By Topic

Robust Support Vector Regression for Uncertain Input and Output Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gao Huang ; Dept. of Autom., Tsinghua Univ., Beijing, China ; Shiji Song ; Cheng Wu ; Keyou You

In this paper, a robust support vector regression (RSVR) method with uncertain input and output data is studied. First, the data uncertainties are investigated under a stochastic framework and two linear robust formulations are derived. Linear formulations robust to ellipsoidal uncertainties are also considered from a geometric perspective. Second, kernelized RSVR formulations are established for nonlinear regression problems. Both linear and nonlinear formulations are converted to second-order cone programming problems, which can be solved efficiently by the interior point method. Simulation demonstrates that the proposed method outperforms existing RSVRs in the presence of both input and output data uncertainties.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 11 )