By Topic

On the Static and Dynamic Behavior of the Germanium Electron-Hole Bilayer Tunnel FET

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Livio Lattanzio ; Nanoelectronic Devices Laboratory (Nanolab), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ; Nilay Dagtekin ; Luca De Michielis ; Adrian M. Ionescu

Tunnel FETs (TFETs) are being intensively investigated for their potential in achieving subthermal switching slopes and extremely low leakage currents. Recently, a promising concept has been proposed: the electron-hole bilayer TFET (EHBTFET), which exploits carrier tunneling through a bias-induced electron-hole bilayer. In this paper, we show that, through appropriate optimization of the Ge EHBTFET, it is possible to achieve superior static characteristics at low supply voltages, when compared with a double-gate Ge MOSFET with similar geometry. The EHBTFET provides an improved average subthreshold slope (from 0 to |VDD| = 0.25 V) of 30 mV/dec against 60 mV/dec at same |ION| ~ 0.18 μA/μm, doubled inverter gain, and larger noise margins, suggesting great potential for low-power applications. The dynamic behavior of the devices is investigated by transient simulations of simple circuits based on complementary inverters. Due to the increased total EHBTFET capacitance, the fanout-of-1 delay is larger than that in MOSFET, with 11 ns versus 4 ns at |VDD| = 0.25 V. However, the EHBTFET results to be more robust than MOSFET for voltage scaling, as the leakage component is far from approaching the dynamic component of the total switching energy at low VDD.

Published in:

IEEE Transactions on Electron Devices  (Volume:59 ,  Issue: 11 )