Cart (Loading....) | Create Account
Close category search window
 

Wordless Sounds: Robust Speaker Diarization Using Privacy-Preserving Audio Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Parthasarathi, S.H.K. ; Int. Comput. Sci. Inst., Berkeley, CA, USA ; Bourlard, H. ; Gatica-Perez, D.

This paper investigates robust privacy-sensitive audio features for speaker diarization in multiparty conversations: i.e., a set of audio features having low linguistic information for speaker diarization in a single and multiple distant microphone scenarios. We systematically investigate Linear Prediction (LP) residual. Issues such as prediction order and choice of representation of LP residual are studied. Additionally, we explore the combination of LP residual with subband information from 2.5 kHz to 3.5 kHz and spectral slope. Next, we propose a supervised framework using deep neural architecture for deriving privacy-sensitive audio features. We benchmark these approaches against the traditional Mel Frequency Cepstral Coefficients (MFCC) features for speaker diarization in both the microphone scenarios. Experiments on the RT07 evaluation dataset show that the proposed approaches yield diarization performance close to the MFCC features on the single distant microphone dataset. To objectively evaluate the notion of privacy in terms of linguistic information, we perform human and automatic speech recognition tests, showing that the proposed approaches to privacy-sensitive audio features yield much lower recognition accuracies compared to MFCC features.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.