Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Characterization of Channel-Diameter-Dependent Low-Frequency Noise in Silicon Nanowire Field-Effect Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
8 Author(s)
Sang-Hyun Lee ; Dept. of Electr. Eng., Pohang Univ. of Sci. & Technol., Pohang, South Korea ; Chang-Ki Baek ; Sooyoung Park ; Dong-Won Kim
more authors

The low-frequency noise in the silicon nanowire field-effect transistor (SNWFET) is characterized using SNWFETs with different channel diameters dNW. The current density and the simulation result indicate that the volume inversion as manifested by the spatial charge distribution is enhanced in smaller dNW. The measured noise data are discussed based on the number and correlated mobility fluctuation model. It is shown that the low-frequency noise decreases in smaller dNW. This dNW-dependent noise behavior is clarified in terms of the effective oxide trap density and the fraction of inversion charges near the Si-SiO2 interface.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 10 )