Cart (Loading....) | Create Account
Close category search window
 

Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry–Pérot-Based Accelerometer Integrated With Channel Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zandi, K. ; Dept. of Eng. Phys., Ecole Polytech. de Montreal, Montréal, QC, Canada ; Belanger, J.A. ; Peter, Y.-A.

In this paper, we present a novel optical microelectromechanical systems (MEMS) accelerometer sensor dedicated to space applications. An in-plane Fabry-Pérot (FP) microcavity (FPM) with two distributed Bragg reflectors (DBRs) is used to detect the acceleration. One of the DBR mirrors is attached to two suspended proof masses, allowing the FP gap to change while proof masses experience acceleration. Acceleration is then detected by measuring the spectral shift of the FPM. The optical accelerometer presented here uses silicon strip waveguides integrated with MEMS on a single silicon-on-insulator wafer, making it compact and robust. All of the device components are fabricated using one single fabrication step. Immunity to electromagnetic interference, high sensitivity and resolution capability, integrability, reliability, low cross-sensitivity, simple fabrication, and possibility of having two- and three-axis sensitivities are numerous advantages of our sensor compared to the conventional ones. The sensor performance demonstrated a 90-nm/g sensitivity and 111-μg resolution and better than 250-mg dynamic range.

Published in:

Microelectromechanical Systems, Journal of  (Volume:21 ,  Issue: 6 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.