By Topic

Non-Iterative Symbol-Wise Beamforming for MIMO-OFDM Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hyun-Ho Lee ; Sch. of Electr. Eng., Korea Univ., Seoul, South Korea ; Young-chai Ko

In this paper, we propose a non-iterative symbol-wise beamforming scheme for MIMO-OFDM systems, which can provide the performance approaching that of the iterative symbol-wise beamforming scheme and can reduce the computational complexity significantly for channels with a small number of strong channel taps. Simulation results show that our proposed scheme leads to a negligible performance loss compared with the iterative symbol-wise beamforming scheme regardless of spatial correlation or presence of co-channel interference. For realistic situations, we also consider the system designs to manage imperfect channel knowledge at the transmitter or receiver. First, we propose a limited feedback technique and a codebook design algorithm for symbol-wise beamforming in a spatially correlated frequency selective channel. Simulation results show that the proposed limited feedback technique can provide insignificant outage capacity loss compared with the symbol-wise beamforming scheme with perfect channel knowledge when the proposed codebook is adopted with a moderate number of feedback bits. Second, we propose a robust transceiver optimization for symbol-wise beamforming under channel uncertainty. From simulation results, we confirm that our proposed robust transceiver optimization can incur less degradation than the iterative and proposed symbol-wise beamforming schemes under the assumption of a bounded channel uncertainty model.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:11 ,  Issue: 10 )