By Topic

Self-Organizing Relays: Dimensioning, Self-Optimization, and Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Combes, R. ; Orange Labs., Issy-les-Moulineaux, France ; Altman, Z. ; Altman, E.

Relay stations are an important component of heterogeneous networks introduced in the LTE-Advanced technology as a means to provide very high capacity and QoS all over the cell area. This paper develops a self-organizing network (SON) feature to optimally allocate resources between backhaul and station to mobile links. Static and dynamic resource sharing mechanisms are investigated. For stationary ergodic traffic we provide a queuing model to calculate the optimal resource sharing strategy and the maximal capacity of the network analytically. When traffic is not stationary, we propose a load balancing algorithm to adapt both the resource sharing and the zones covered by the relays based on measurements. Convergence to an optimal configuration is proven using stochastic approximation techniques. Self-optimizing dynamic resource allocation is tackled using a Markov Decision Process model. Stability in the infinite buffer case and blocking rate and file transfer time in the finite buffer case are considered. For a scalable solution with a large number of relays, a well-chosen parameterized family of policies is considered, to be used as expert knowledge. Finally, a model-free approach is shown in which the network can derive the optimal parameterized policy, and the convergence to a local optimum is proven.

Published in:

Network and Service Management, IEEE Transactions on  (Volume:9 ,  Issue: 4 )