Cart (Loading....) | Create Account
Close category search window
 

Inserting a p-InGaN layer before the p-AlGaN electron blocking layer suppresses efficiency droop in InGaN-based light-emitting diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lin, Ray-Ming ; Graduate Institute of Electronic Engineering and Green Technology Research Center, Chang Gung University, Taoyuan 333, Taiwan ; Yu, Sheng-Fu ; Shoou-Jinn Chang ; Chiang, Tsung-Hsun
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4747802 

In this study, we observed a dramatic decrease in the efficiency droop of InGaN/GaN light-emitting diodes after positioning a p-InGaN insertion layer before the p-AlGaN electron-blocking layer. The saturated external quantum efficiency of this device extended to 316 mA, with an efficiency droop of only 7% upon increasing the operating current to 1 A; in contrast, the corresponding conventional light-emitting diode suffered a severe efficiency droop of 42%. We suspect that the asymmetric carrier distribution was effectively mitigated as a result of an improvement in the hole injection rate and a suppression of electron overflow.

Published in:

Applied Physics Letters  (Volume:101 ,  Issue: 8 )

Date of Publication:

Aug 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.