By Topic

Unit commitment for power generation system including PV and batteries by Mixed Integer Quadratic Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Galih Yudhaprawira ; Department of Electrical Engineering and Information Technology Gadjah Mada University, Jalan Grafika No 2, Kampus UGM Yogyakarta Indonesia 55281 ; Sarjiya ; Sasongko Pramono Hadi

The use of renewable energy to support the power system operation is a way to reduce the energy dependence from fossil resources. Photo voltage (PV) is one of renewable energy suitable used in tropical area because of the availability of adequate sunlight. One of the problems when PVs are interconnected to thermal generation system is how to determine the committed thermal units to serve the load. In this paper, the unit commitment problems of generation system including PVs and battery are solved using Mixed Integer Quadratic Programming (MIQP). Three simulation scenarios are reported which represent the impact of involving PVs and battery in total operation cost. When PVs are involved in the scheduling, they could reduce the power generated by thermal unit as well as total operation cost. Similarly, when battery units are involved, the battery capability to store and release energy also could reduce total operation cost.

Published in:

Power Engineering and Renewable Energy (ICPERE), 2012 International Conference on

Date of Conference:

3-5 July 2012