By Topic

A rainfall prediction model using artificial neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kumar Abhishek ; Dept. of Computer Science and Engineering, NIT Patna-800005, India ; Abhay Kumar ; Rajeev Ranjan ; Sarthak Kumar

The multilayered artificial neural network with learning by back-propagation algorithm configuration is the most common in use, due to of its ease in training. It is estimated that over 80% of all the neural network projects in development use back-propagation. In back-propagation algorithm, there are two phases in its learning cycle, one to propagate the input patterns through the network and other to adapt the output by changing the weights in the network. The back-propagation-feed forward neural network can be used in many applications such as character recognition, weather and financial prediction, face detection etc. The paper implements one of these applications by building training and testing data sets and finding the number of hidden neurons in these layers for the best performance. In the present research, possibility of predicting average rainfall over Udupi district of Karnataka has been analyzed through artificial neural network models. In formulating artificial neural network based predictive models three layered network has been constructed. The models under study are different in the number of hidden neurons.

Published in:

Control and System Graduate Research Colloquium (ICSGRC), 2012 IEEE

Date of Conference:

16-17 July 2012