By Topic

Silicon-Based Dynamic Synapse With Depressing Response

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dowrick, T. ; Dept. of Electr. Eng. & Electron., Univ. of Liverpool, Liverpool, UK ; Hall, S. ; McDaid, L.J.

A compact implementation of a dynamic charge transfer synapse cell, capable of implementing synaptic depression, is presented. The cell is combined with a simple current mirror summing node to produce biologically plausible postsynaptic potentials (PSPs). A single charge packet is effectively transferred from the synapse to the summing node, whenever a presynaptic pulse is applied to one of its terminals. The charge packet is “weighted” by a voltage applied to the second terminal of the synapse. A voltage applied to the third terminal determines the charge recovery time in the synapse, which can be adjusted over several orders of magnitude. This voltage determines the paired pulse ratio for the synapse. The fall time of the PSP is also adjustable and is set by the gate voltage of a metal-oxide-semiconductor field-effect transistor operating in subthreshold. Results extracted from chips fabricated in a 0.35-μm complementary metal-oxide-semiconductor process, alongside theoretical and simulation results, confirm the ability of the cell to produce PSPs that are characteristic of real synapses. The concept addresses a key requirement for scalable hardware neural networks.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 10 )