By Topic

Phase-Shift-Controlled Three-Level Converter With Reduced Voltage Stress Featuring ZVS Over the Full Operation Range

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jorge L. Duarte ; Electromechanics and Power Electronics Group, Technical University of Eindhoven, Eindhoven 5612 AZ, The Netherlands ; Janos Lokos ; Frank B. M. van Horck

The simplicity of phase-shift control at fixed switching frequency and 50% duty-cycle operation is fully exploited by the proposed converter topology. The transistor voltages are clamped to only 50% of the dc input, the dc bus capacitive dividers being naturally stabilized. Furthermore, zero-voltage switching for all switches is guaranteed from no-load to full-load conditions, that is to say, from zero to nominal output voltage and from zero to nominal load current. As such, the proposed topology is an excellent candidate for demanding applications as compact battery chargers for electric vehicles. Experimental results obtained from a 400-80-V/0-360-V/2-kW/100-kHz prototype support the theoretical analysis.

Published in:

IEEE Transactions on Power Electronics  (Volume:28 ,  Issue: 5 )