Cart (Loading....) | Create Account
Close category search window
 

Distributed Control to Ensure Proportional Load Sharing and Improve Voltage Regulation in Low-Voltage DC Microgrids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Anand, S. ; Department of Electrical Engineering , Indian Institute of Technology Bombay, Mumbai, India ; Fernandes, B. G. ; Guerrero, M.

DC microgrids are gaining popularity due to high efficiency, high reliability, and easy interconnection of renewable sources as compared to the ac system. Control objectives of dc microgrid are: 1) to ensure equal load sharing (in per unit) among sources; and 2) to maintain low-voltage regulation of the system. Conventional droop controllers are not effective in achieving both the aforementioned objectives simultaneously. Reasons for this are identified to be the error in nominal voltages and load distribution. Though centralized controller achieves these objectives, it requires high-speed communication and offers less reliability due to single point of failure. To address these limitations, this paper proposes a new decentralized controller for dc microgrid. Key advantages are high reliability, low-voltage regulation, and equal load sharing, utilizing low-bandwidth communication. To evaluate the dynamic performance, mathematical model of the scheme is derived. Stability of the system is evaluated by eigenvalue analysis. The effectiveness of the scheme is verified through a detailed simulation study. To confirm the viability of the scheme, experimental studies are carried out on a laboratory prototype developed for this purpose. Controller area network protocol is utilized to achieve communication between the sources.

Published in:

Power Electronics, IEEE Transactions on  (Volume:28 ,  Issue: 4 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.